Search This Blog

Tuesday, 25 March 2025

mongo db lab

 db.data.insertMany([

  { _id: 1, name: 'John Doe', age: 30, department: 'HR', salary: 60000 },

      { _id: 2, name: 'Jane Smith', age: 25, department: 'Engineering', salary: 80000 },

      { _id: 3, name: 'Sam Johnson', age: 45, department: 'Engineering', salary: 120000 },

      { _id: 4, name: 'Chris Lee', age: 35, department: 'Marketing', salary: 75000 },

      { _id: 5, name: 'Emma Brown', age: 29, department: 'HR', salary: 65000 },

      { _id: 6, name: 'Alex Taylor', age: 32, department: 'Engineering', salary: 95000 },

      { _id: 7, name: 'Sophia Williams', age: 28, department: 'Marketing', salary: 70000 },

      { _id: 8, name: 'James Davis', age: 50, department: 'Management', salary: 150000 }

])


db.data.find().sort({ age: 1 })


db.data.find().limit(3)


db.data.count({ department: "Engineering" })


db.data.aggregate([

  { $group: { _id: "$department", totalEmployees: { $sum: 1 } } }

])



db.data.aggregate([

  { $group: { _id: "$department", averageSalary: { $avg: "$salary" } } }

])




No comments:

Post a Comment

Hadoop Analytics

pigdemo-1

 1. first create data file emp111.txt in ur LFS 2. MOVE to HDFS 3. OPen vi editor type Pig Script 4. vi pig1.pig bag1= load 'emp.txt...